Activation of sirtuin 1/3 improves vascular hyporeactivity in severe hemorrhagic shock by alleviation of mitochondrial damage

نویسندگان

  • Pengyun Li
  • Xianzhong Meng
  • Huining Bian
  • Nana Burns
  • Ke-seng Zhao
  • Rui Song
چکیده

Vascular hyporeactivity is one of the major causes responsible for refractory hypotension and associated mortality in severe hemorrhagic shock. Mitochondrial permeability transition (mPT) pore opening in arteriolar smooth muscle cells (ASMCs) is involved in the pathogenesis of vascular hyporeactivity. However, the molecular mechanism underlying mitochondrial injury in ASMCs during hemorrhagic shock is not well understood. Here we produced an in vivo model of severe hemorrhagic shock in adult Wistar rats. We found that sirtuin (SIRT)1/3 protein levels and deacetylase activities were decreased in ASMCs following severe shock. Immunofluorescence staining confirmed reduced levels of SIRT1 in the nucleus and SIRT3 in the mitochondria, respectively. Acetylation of cyclophilin D (CyPD), a component of mPT pore, was increased. SIRT1 activators suppressed mPT pore opening and ameliorated mitochondrial injury in ASMCs after severe shock. Furthermore, administration of SIRT1 activators improved vasoreactivity in rats under severe shock. Our data suggest that epigenetic mechanisms, namely histone post-translational modifications, are involved in regulation of mPT by SIRT1/SIRT3- mediated deacetylation of CyPD. SIRT1/3 is a promising therapeutic target for the treatment of severe hemorrhagic shock.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial injury underlies hyporeactivity of arterial smooth muscle in severe shock.

BACKGROUND Our previous data showed membrane hyperpolarization of arteriolar smooth muscle cells (ASMCs) caused by adenosine triphosphate (ATP)-sensitive potassium channels (K(ATP)) activation contributed to vascular hyporeactivity in shock. Despite supply of oxygen and nutrients, vascular hyporeactivity to vasoconstrictor agents still remains, which may result from low ATP level. The study was...

متن کامل

Myosin light chain kinase is necessary for post-shock mesenteric lymph drainage enhancement of vascular reactivity and calcium sensitivity in hemorrhagic-shocked rats

Vascular hyporeactivity is an important factor in irreversible shock, and post-shock mesenteric lymph (PSML) blockade improves vascular reactivity after hemorrhagic shock. This study explored the possible involvement of myosin light chain kinase (MLCK) in PSML-mediated vascular hyporeactivity and calcium desensitization. Rats were divided into sham (n=12), shock (n=18), and shock+drainage (n=18...

متن کامل

Hemorrhagic shock-induced vascular hyporeactivity in the rat: relationship to gene expression of nitric oxide synthase, endothelin-1, and select cytokines in corresponding organs.

BACKGROUND Our previous work observed that vascular hyporeactivity to norepinephrine (NE) developed after hemorrhage and the response was not the same in the 4 arteries examined. To evaluate possible mechanisms involved, the present study investigated the gene expression of iNOS, eNOS, IL-1beta, IL-6, TNF-alpha, and endothelin-1 in the corresponding organs, and the roles of nitric oxide (NO) an...

متن کامل

A journey in doxorubicin-induced cardiotoxicity with emphasizing on the role of Connexin 43 and Sirtuin-3

Cancer has become a major health problem worldwide. The reported incidence of new cancer cases is estimated at 19.3 million, with a mortality rate of 10 million in the world in 2020. There are some approaches for cancer treatment such as chemotherapy, neoadjuant surgery, hormone therapy, and radiotherapy. Chemotherapy is an aggressive form of chemical drug therapy meant to destroy rapidly growi...

متن کامل

Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome.

Fifty percent of trauma patients who present sepsis-like syndrome do not have bacterial infections. This condition is known as systemic inflammatory response syndrome (SIRS). A unifying factor of SIRS and sepsis is cardiovascular collapse. Trauma and severe blood loss cause the release of endogenous molecules known as damage-associated molecular patterns. Mitochondrial N-formyl peptides (F-MIT)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015